This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_4_A"
#include <vector>
#include <iostream>
#include <algorithm>
#include <cassert>
#include <set>
#include <queue>
#include <map>
#include <array>
using namespace std;
#include "../../lib/40-graph/Graph.cpp"
#include "../../lib/15-queue/RadixHeap.cpp"
#include "../../lib/40-graph/MinimumDirectedClosedCircuit.cpp"
int main(){
int N,M; cin >> N >> M;
Graph<int> graph(N);
for(int i = 0; i < M; ++i){
int u,v; cin >> u >> v;
graph.make_edge(u,v,1);
}
MinimumDirectedClosedCircuit<int> mdcc(graph,1234567);
int ans = 0;
int inf = 1234567;
for(int i = 0; i < N; ++i){
mdcc.solve(i);
auto tmp = mdcc.restore();
if(!tmp.empty()) ans = 1;
}
cout << ans << endl;
return 0;
}
#line 1 "test/graph/MinimumDirectedClosedCircuit.test.cpp"
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_4_A"
#include <vector>
#include <iostream>
#include <algorithm>
#include <cassert>
#include <set>
#include <queue>
#include <map>
#include <array>
using namespace std;
#line 1 "lib/40-graph/Graph.cpp"
/*
* @title Graph
* @docs md/graph/Graph.md
*/
template<class T> class Graph{
private:
const size_t N,H,W;
public:
vector<vector<pair<size_t,T>>> edges;
Graph(const size_t N):H(-1),W(-1),N(N), edges(N) {}
Graph(const size_t H, const size_t W):H(H),W(W),N(H*W), edges(H*W) {}
inline void make_edge(size_t from, size_t to, T w) {
edges[from].emplace_back(to,w);
}
//{from_y,from_x} -> {to_y,to_x}
inline void make_edge(pair<size_t,size_t> from, pair<size_t,size_t> to, T w) {
make_edge(from.first*W+from.second,to.first*W+to.second,w);
}
inline void make_bidirectional_edge(size_t from, size_t to, T w) {
make_edge(from,to,w);
make_edge(to,from,w);
}
inline void make_bidirectional_edge(pair<size_t,size_t> from, pair<size_t,size_t> to, T w) {
make_edge(from.first*W+from.second,to.first*W+to.second,w);
make_edge(to.first*W+to.second,from.first*W+from.second,w);
}
inline size_t size(){return N;}
inline size_t idx(pair<size_t,size_t> yx){return yx.first*W+yx.second;}
};
#line 1 "lib/15-queue/RadixHeap.cpp"
/*
* @title RadixHeap - 非負整数heap
* @docs md/queue/RadixHeap.md
*/
template<class T, class Key = unsigned long long> class RadixHeap{
using TypeNode = pair<Key, T>;
template<class InnerKey, class ZZ=InnerKey> class Inner{};
template<class InnerKey> class Inner<InnerKey, unsigned long long>{
array<vector<TypeNode>,65> vq;
unsigned long long size_num;
TypeNode last;
inline int bit(unsigned long long a) { return a ? 64 - __builtin_clzll(a) : 0;}
public:
Inner(T mini) : size_num(0), last(make_pair(0, mini)) {}
inline bool empty() { return size_num == 0; }
inline size_t size(){ return size_num; }
inline void push(TypeNode x){ ++size_num; vq[bit(x.first^last.first)].push_back(x);}
inline void emplace(unsigned long long key,T val){ ++size_num; vq[bit(key^last.first)].emplace_back(key,val);}
inline TypeNode pop() {
if(vq[0].empty()) {
int i = 1;
while(vq[i].empty()) ++i;
last = *min_element(vq[i].begin(),vq[i].end());
for(auto &p : vq[i]) vq[bit(p.first ^ last.first)].push_back(p);
vq[i].clear();
}
--size_num;
auto res = vq[0].back(); vq[0].pop_back();
return res;
}
};
template<class InnerKey> class Inner<InnerKey, unsigned int>{
array<vector<TypeNode>,33> vq;
unsigned int size_num;
TypeNode last;
inline int bit(unsigned int a) { return a ? 32 - __builtin_clz(a) : 0;}
public:
Inner(T mini) : size_num(0), last(make_pair(0, mini)) {}
inline bool empty() { return size_num == 0; }
inline size_t size(){ return size_num; }
inline void push(TypeNode x){ ++size_num; vq[bit(x.first^last.first)].push_back(x);}
inline void emplace(unsigned int key,T val){ ++size_num; vq[bit(key^last.first)].emplace_back(key,val);}
inline TypeNode pop() {
if(vq[0].empty()) {
int i = 1;
while(vq[i].empty()) ++i;
last = *min_element(vq[i].begin(),vq[i].end());
for(auto &p : vq[i]) vq[bit(p.first ^ last.first)].push_back(p);
vq[i].clear();
}
--size_num;
auto res = vq[0].back(); vq[0].pop_back();
return res;
}
};
Inner<Key,Key> inner;
public:
RadixHeap(T mini) : inner(mini) {}
inline bool empty() { return inner.empty();}
inline size_t size(){ return inner.size();}
inline void push(TypeNode x){ inner.push(x);}
inline void emplace(unsigned long long key,T val){ inner.emplace(key,val);}
inline TypeNode pop() { return inner.pop(); }
};
#line 1 "lib/40-graph/MinimumDirectedClosedCircuit.cpp"
/*
* @title MinimumDirectedClosedCircuit - 有向グラフの最小閉路検出
* @docs md/graph/MinimumDirectedClosedCircuit.md
*/
template<class T> class MinimumDirectedClosedCircuit {
//Tは整数型のみ
static_assert(std::is_integral<T>::value, "template parameter T must be integral type");
Graph<T>& graph;
vector<T> dist;
vector<int> parent;
size_t N;
T inf;
int last,root;
private:
T solve_impl() {
T mini = inf;
last = -1;
RadixHeap<int, unsigned int> q(0);
q.push({0,root});
dist[root] = 0;
while (q.size()) {
auto top = q.pop();
size_t curr = top.second;
if(top.first > dist[curr]) continue;
for(auto& edge:graph.edges[curr]){
size_t next = edge.first;
T w = edge.second;
if(dist[next] > dist[curr]+w) {
dist[next] = dist[curr] + w;
parent[next] = curr;
q.push({dist[next],next});
}
//根に返って来てるなら閉路候補
if(next == root && mini > dist[curr]+w) {
mini = dist[curr]+w;
last = curr;
}
}
}
return mini;
}
public:
MinimumDirectedClosedCircuit(Graph<T>& graph, T inf)
: graph(graph),N(graph.size()),dist(graph.size()),parent(graph.size()),inf(inf) {
}
//rootを含む最小閉路の集合を返す O(NlogN) 閉路がないときは空集合
inline T solve(size_t rt){
root = rt;
//初期化
for(int i = 0; i < N; ++i) dist[i] = inf, parent[i] = -1;
//最小閉路の大きさを決める
T mini = solve_impl();
return mini;
}
vector<int> restore() {
vector<int> res;
if(last == -1) return res;
int curr = last;
res.push_back(curr);
while(curr != root) res.push_back(curr = parent[curr]);
reverse(res.begin(),res.end());
return res;
}
};
#line 16 "test/graph/MinimumDirectedClosedCircuit.test.cpp"
int main(){
int N,M; cin >> N >> M;
Graph<int> graph(N);
for(int i = 0; i < M; ++i){
int u,v; cin >> u >> v;
graph.make_edge(u,v,1);
}
MinimumDirectedClosedCircuit<int> mdcc(graph,1234567);
int ans = 0;
int inf = 1234567;
for(int i = 0; i < N; ++i){
mdcc.solve(i);
auto tmp = mdcc.restore();
if(!tmp.empty()) ans = 1;
}
cout << ans << endl;
return 0;
}