This documentation is automatically generated by online-judge-tools/verification-helper
/*
* @title Matrix - 行列演算
* @docs md/math/Matrix.md
*/
template <class T, int H, int W = H> class Matrix {
public:
int h,w;
array<array<T,W>,H> a;
Matrix():h(H),w(W){
// do nothing
}
Matrix(const vector<vector<T>>& vec):h(H),w(W) {
assert(vec.size()==H && vec.front().size()==W);
for(int i = 0; i < H; ++i) for(int j = 0; j < W; ++j) a[i][j]=vec[i][j];
}
static Matrix E() {
assert(H==W);
Matrix res = Matrix();
for(int i = 0; i < H; ++i) res[i][i]=1;
return res;
}
Matrix &operator+=(const Matrix &r) {
assert(H==r.h&&W==r.w);
for(int i = 0; i < H; ++i) for(int j = 0; j < W; ++j) a[i][j]+=r[i][j];
return *this;
}
Matrix &operator-=(const Matrix &r) {
assert(H==r.h&&W==r.w);
for(int i = 0; i < H; ++i) for(int j = 0; j < W; ++j) a[i][j]-=r[i][j];
return *this;
}
Matrix &operator*=(const Matrix &r) {
assert(W==r.h);
Matrix res = Matrix();
for(int i = 0; i < H; ++i) for(int j = 0; j < r.w; ++j) for(int k = 0; k < W; ++k) res[i][j]+=(a[i][k])*(r[k][j]);
a.swap(res.a);
return *this;
}
Matrix operator+(const Matrix& r) const {
return Matrix(*this) += r;
}
Matrix operator-(const Matrix& r) const {
return Matrix(*this) -= r;
}
Matrix operator*(const Matrix& r) const {
return Matrix(*this) *= r;
}
inline array<T,W> &operator[](int i) {
return a[i];
}
inline const array<T,W> &operator[](int i) const {
return a[i];
}
Matrix pow(long long K) const {
assert(H == W);
Matrix x(*this);
Matrix res = this->E();
for (; K > 0; K /= 2) {
if (K & 1) res *= x;
x *= x;
}
return res;
}
T determinant(void) const {
assert(H==W);
Matrix x(*this);
T res = 1;
for(int i = 0; i < H; i++) {
int idx = -1;
for(int j = i; j < W; j++) if(x[j][i] != 0) idx = j;
if(idx == -1) return 0;
if(i != idx) {
res *= -1;
swap(x[i], x[idx]);
}
res *= x[i][i];
T tmp = x[i][i];
for(int j = 0; j < W; ++j) x[i][j] /= tmp;
for(int j = i + 1; j < H; j++) {
tmp = x[j][i];
for(int k = 0; k < W; k++) x[j][k] -= x[i][k]*tmp;
}
}
return res;
}
};
#line 1 "lib/30-math/Matrix.cpp"
/*
* @title Matrix - 行列演算
* @docs md/math/Matrix.md
*/
template <class T, int H, int W = H> class Matrix {
public:
int h,w;
array<array<T,W>,H> a;
Matrix():h(H),w(W){
// do nothing
}
Matrix(const vector<vector<T>>& vec):h(H),w(W) {
assert(vec.size()==H && vec.front().size()==W);
for(int i = 0; i < H; ++i) for(int j = 0; j < W; ++j) a[i][j]=vec[i][j];
}
static Matrix E() {
assert(H==W);
Matrix res = Matrix();
for(int i = 0; i < H; ++i) res[i][i]=1;
return res;
}
Matrix &operator+=(const Matrix &r) {
assert(H==r.h&&W==r.w);
for(int i = 0; i < H; ++i) for(int j = 0; j < W; ++j) a[i][j]+=r[i][j];
return *this;
}
Matrix &operator-=(const Matrix &r) {
assert(H==r.h&&W==r.w);
for(int i = 0; i < H; ++i) for(int j = 0; j < W; ++j) a[i][j]-=r[i][j];
return *this;
}
Matrix &operator*=(const Matrix &r) {
assert(W==r.h);
Matrix res = Matrix();
for(int i = 0; i < H; ++i) for(int j = 0; j < r.w; ++j) for(int k = 0; k < W; ++k) res[i][j]+=(a[i][k])*(r[k][j]);
a.swap(res.a);
return *this;
}
Matrix operator+(const Matrix& r) const {
return Matrix(*this) += r;
}
Matrix operator-(const Matrix& r) const {
return Matrix(*this) -= r;
}
Matrix operator*(const Matrix& r) const {
return Matrix(*this) *= r;
}
inline array<T,W> &operator[](int i) {
return a[i];
}
inline const array<T,W> &operator[](int i) const {
return a[i];
}
Matrix pow(long long K) const {
assert(H == W);
Matrix x(*this);
Matrix res = this->E();
for (; K > 0; K /= 2) {
if (K & 1) res *= x;
x *= x;
}
return res;
}
T determinant(void) const {
assert(H==W);
Matrix x(*this);
T res = 1;
for(int i = 0; i < H; i++) {
int idx = -1;
for(int j = i; j < W; j++) if(x[j][i] != 0) idx = j;
if(idx == -1) return 0;
if(i != idx) {
res *= -1;
swap(x[i], x[idx]);
}
res *= x[i][i];
T tmp = x[i][i];
for(int j = 0; j < W; ++j) x[i][j] /= tmp;
for(int j = i + 1; j < H; j++) {
tmp = x[j][i];
for(int k = 0; k < W; k++) x[j][k] -= x[i][k]*tmp;
}
}
return res;
}
};